集成算法概述
集成学习是时下非常流行的机器学习算法,它本身不是一个单独的机器学习算法,而是通过在数据上构建多个模型,集成所有模型建模结果。基本上所有的机器学习领域都可以看到集成学习的身影。
集成算法会考虑多个评估器的建模结果,汇总之后得到一个综合的结果,以此来获取比单个模型更好的回归或分类表现。
多个模型集成称为的模型叫做集成评估器(ensemble estimator),组成集成评估器的每个模型都叫做基评估器(base estimator)。通常来说,有三类集成算法:装袋法(Bagging)、提升法(Boosting)、stacking
装袋法的核心思想是构建多个相互独立的评估器,然后对其预测进行平均或多数表决原则来决定集成评估器的结
果。装袋法的代表模型就是随机森林。
提升法中,基评估器是相关的,是按顺序一一构建的。其核心思想是结合弱评估器的力量一次次对难以评估的样本
进行预测,从而构成一个强评估器。提升法的代表模型有Adaboost和梯度提升树
sklearn中的集成算法
sklearn集成算法模块ensemble
分类树参数、属性和接口
参数
n_estimators
这是森林中树木的数量,即基评估器的数量。这个参数对随机森林模型的精确性影响是单调的,n_estimators越大,模型的效果往往越好。但是相应的,任何模型都有决策边界,n_estimators达到一定的程度之后,随机森林的精确性往往不在上升或开始波动,并且,n_estimators越大,需要的计算量和内存也越大,训练的时间也会越来越长。对于这个参数,我们是渴望在训练难度和模型效果之间取得平衡。n_estimators的默认值在现有版本的sklearn中是10,但是在即将更新的0.22版本中,这个默认值会被修正为100。这个修正显示出了使用者的调参倾向:要更大的n_estimators。
random_state
随机森林的本质是一种装袋集成算法(bagging),装袋集成算法是对基评估器的预测结果进行平均或用多数表决元则来决定集成评估器的结果。决策树从最重要的特征中随机选择出一个特征来进行分枝,因此每次生成的决策树都不一样,这个功能由参数random_state控制。随机森林中其实也有random_state,用法和分类树中相似,只不过在分类树中,一个random_state只控制生成一棵树,而随机森林中的random_state控制的是生成森林的模式,而非让一个森林中只有一棵树。
bootstrap&oob_score
要让基分类器尽量都不一样,一种很容易理解的方法是使用不同的训练集来进行训练,而袋装法正是通过有放回的随机抽样技术来形成不同的训练数据,bootstrap就是用来控制抽样技术的参数。
在一个含有n个样本的原始训练集中,我们进行随机采样,每次采样一个样本,并在抽取下一个样本之前将该样本放回原始训练集,也就是说下次采样时这个样本依然可能被采集到,这样采集n次,最终得到一个和原始训练集一样大的,n个样本组成的自助集。由于是随机采样,这样每次的自助集和原始数据集不同,和其他的采样集也是不同的。这样我们就可以自由创造取之不尽用之不竭,并且互不相同的自助集,用这些自助集来训练我们的基分类器,我们的基分类器自然也就各不相同了。
bootstrap参数默认True,代表采用这种有放回的随机抽样技术。通常,这个参数不会被我们设置为False
如果希望用袋外数据来测试,则需要在实例化时就将oob_score这个参数调整为True,训练完毕之后,我们可以用随机森林的另一个重要属性:oob_score_来查看我们的在袋外数据上测试的结果。
参数的详细解释和其它控制基评估器的参数请参考决策树)
属性
随机森林中有三个非常重要的属性:.estimators_,.oob_score_以及.feature_importances_。
.estimators_是用来查看随机森林中所有树的列表的。
.oob_score_指的是袋外得分。随机森林为了确保林中的每棵树都不尽相同,所以采用了对训练集进行有放回抽样的方式来不断组成信的训练集,在这个过程中,会有一些数据从来没有被随机挑选到,他们就被叫做“袋外数据”。这些袋外数据,没有被模型用来进行训练,sklearn可以帮助我们用他们来测试模型,测试的结果就由这个属性oob_score_来导出,本质还是模型的精确度。
而.feature_importances_和决策树中的.feature_importances_用法和含义都一致,是返回特征的重要性
接口
随机森林的接口与决策树完全一致,因此依然有四个常用接口:apply, fit, predict和score。除此之外,还需要注意随机森林的predict_proba接口,这个接口返回每个测试样本对应的被分到每一类标签的概率,标签有几个分类就返回几个概率。如果是二分类问题,则predict_proba返回的数值大于0.5的,被分为1,小于0.5的,被分为0。传统的随机森林是利用袋装法中的规则,平均或少数服从多数来决定集成的结果,而sklearn中的随机森林是平均每个样本对应的predict_proba返回的概率,得到一个平均概率,从而决定测试样本的分类。
回归树
所有的参数,属性与接口,全部和随机森林分类器一致。仅有的不同就是回归树与分类树的不同,不纯度的指标,参数Criterion不一致。
criterion:
回归树衡量分枝质量的指标,支持的标准有三种:
1)输入”mse”使用均方误差mean squared error(MSE),父节点和叶子节点之间的均方误差的差额将被用来作为特征选择的标准,这种方法通过使用叶子节点的均值来最小化L2损失。
2)输入“friedman_mse”使用费尔德曼均方误差,这种指标使用弗里德曼针对潜在分枝中的问题改进后的均方误差
3)输入”mae”使用绝对平均误差MAE(mean absolute error),这种指标使用叶节点的中值来最小化L1损失,属性中最重要的依然是feature_importances_,接口依然是apply, fit, predict, score最核心
其中N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。所以MSE的本质,其实是样本真实数据与回归结果的差异。在回归树中,MSE不只是我们的分枝质量衡量指标,也是我们最常用的衡量回归树回归质量的指标,当我们在使用交叉验证,或者其他方式获取回归树的结果时,我们往往选择均方误差作为我们的评估(在分类树中这个指标是score代表的预测准确率)。在回归中,我们追求的是,MSE越小越好。然而,回归树的接口score返回的是R平方,并不是MSE。R平方被定义如下 :
其中u是残差平方和(MSE * N),v是总平方和,N是样本数量,i是每一个数据样本,fi是模型回归出的数值,yi是样本点i实际的数值标签。y帽是真实数值标签的平均数。R平方可以为正为负(如果模型的残差平方和远远大于模型的总平方和,模型非常糟糕,R平方就会为负),而均方误差永远为正。值得一提的是,虽然均方误差永远为正,但是sklearn当中使用均方误差作为评判标准时,却是计算”负均方误差“(neg_mean_squared_error)。这是因为sklearn在计算模型评估指标的时候,会考虑指标本身的性质,均方误差本身是一种误差,所以被sklearn划分为模型的一种损失(loss),因此在sklearn当中,都以负数表示。真正的均方误差MSE的数值,其实就是neg_mean_squared_error去掉负号的数字。
随机森林coding:
1 | from sklearn.tree import DecisionTreeClassifier |
机器学习中调参的基本思想
泛化误差
在机器学习中,我们用来衡量模型在未知数据上的准确率的指标,叫做泛化误差(Genelization error)
当模型在未知数据(测试集或者袋外数据)上表现糟糕时,我们说模型的泛化程度不够,泛化误差大,模型的效果
不好。泛化误差受到模型的结构(复杂度)影响。看下面这张图,它准确地描绘了泛化误差与模型复杂度的关系,
当模型太复杂,模型就会过拟合,泛化能力就不够,所以泛化误差大。当模型太简单,模型就会欠拟合,拟合能力
就不够,所以误差也会大。只有当模型的复杂度刚刚好的才能够达到泛化误差最小的目标。
1)模型太复杂或者太简单,都会让泛化误差高,我们追求的是位于中间的平衡点
2)模型太复杂就会过拟合,模型太简单就会欠拟合
3)对树模型和树的集成模型来说,树的深度越深,枝叶越多,模型越复杂
4)树模型和树的集成模型的目标,都是减少模型复杂度,把模型往图像的左边移动
偏差和方差
观察下面的图像,每个点就是集成算法中的一个基评估器产生的预测值。红色虚线代表着这些预测值的均值,而蓝色的线代表着数据本来的面貌。
偏差:模型的预测值与真实值之间的差异,即每一个红点到蓝线的距离。在集成算法中,每个基评估器都会有自己的偏差,集成评估器的偏差是所有基评估器偏差的均值。模型越精确,偏差越低。
方差:反映的是模型每一次输出结果与模型预测值的平均水平之间的误差,即每一个红点到红色虚线的距离,衡量模型的稳定性。模型越稳定,方差越低。
方差和偏差对模型的影响:
然而,方差和偏差是此消彼长的,不可能同时达到最小值
从图上可以看出,模型复杂度大的时候,方差高,偏差低。偏差低,就是要求模型要预测得“准”。模型就会更努力去学习更多信息,会具体于训练数据,这会导致,模型在一部分数据上表现很好,在另一部分数据上表现却很糟糕。模型泛化性差,在不同数据上表现不稳定,所以方差就大。而要尽量学习训练集,模型的建立必然更多细节,复杂程度必然上升。所以,复杂度高,方差高,总泛化误差高。
相对的,复杂度低的时候,方差低,偏差高。方差低,要求模型预测得“稳”,泛化性更强,那对于模型来说,它就不需要对数据进行一个太深的学习,只需要建立一个比较简单,判定比较宽泛的模型就可以了。结果就是,模型无法在某一类或者某一组数据上达成很高的准确度,所以偏差就会大。所以,复杂度低,偏差高,总泛化误差高。
我们调参的目标是,达到方差和偏差的完美平衡 !
随机森林的调参
1 | from sklearn.datasets import load_breast_cancer |
调n_estimators
1 | #从曲线看,n_estimators较平稳且准确率高的范围在35-45之间 |
调整max_depth
1 | rfc = RandomForestClassifier(n_estimators=39 |
调整max_feature
1 | rfc=RandomForestClassifier(n_estimators=39,max_depth=11,random_state=90) |
注意:在这步的max_features升高之后,模型的准确率却没有变化。说明模型本身已经处于泛化误差最低点,已经达到了模型的预测上限,没有参数可以左右的部分了。剩下的那些误差,是噪声决定的,已经没有方差和偏差的舞台了。如果是现实案例,我们到这一步其实就可以停下了,因为复杂度和泛化误差的关系已经告诉我们,模型不能再进步了。调参和训练模型都需要很长的时间,明知道模型不能进步了还继续调整,不是一个有效率的做法。如果我们希望模型更进一步,我们会选择更换算法,或者更换做数据预处理的方式 。但我让我们的探究继续。ps:我不要你觉得,我要我觉得
1 | param_grid={"min_samples_leaf":np.arange(1,10,1)} |
这步后的准确率还是没有变化,不要改变参数,让它默认就好
调整min_samples_split
1 | param_grid={'min_samples_split':np.arange(2, 2+20, 1)} |
还是没有变化
调整criterion
1 | param_grid = {'criterion':['gini', 'entropy']} |
在整个调参过程之中,我们首先调整了n_estimators(无论如何都请先走这一步),然后调整max_depth,通max_depth产生的结果,来判断模型位于复杂度-泛化误差图像的哪一边,从而选择我们应该调整的参数和调参的方向。